Riemann’s zeta function and the broadband structure of pure harmonics

نویسنده

  • Artur Sowa
چکیده

Let a ∈ (0, 1) and let Fs(a) be the periodized zeta function that is defined as Fs(a) = ∑ n−s exp(2πina) for 1, and extended to the complex plane via analytic continuation. Let sn = σn + itn, tn > 0, denote the sequence of nontrivial zeros of the Riemann zeta function in the upper halfplane ordered according to nondecreasing ordinates. We demonstrate that, assuming the Riemann Hypothesis, the Cesàro means of the sequence Fsn(a) converge to the first harmonic exp(2πia) in the sense of periodic distributions. This reveals a natural broadband structure of the pure tone. The proof involves Fujii’s refinement of the classical Landau theorem related to the uniform distribution modulo one of the nontrivial zeros of ζ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann’s zeta function and the prime series display a biotic pattern of diversification, novelty, and complexity

Here we investigate the processes of accumulation and rotation in the generation of novelty by examining series generated by the accumulation of primes and approximations to the primes via progressive divisibility selections, and series generated by Riemann’s equation. Riemann’s zeta function is a re-encoding of the structure of the prime numbers. These studies indicate that the generation of p...

متن کامل

EASY PROOFS OF RIEMANN’S FUNCTIONAL EQUATION FOR ζ(s) AND OF LIPSCHITZ SUMMATION

We present a new, simple proof, based upon Poisson summation, of the Lipschitz summation formula. A conceptually easy corollary is the functional relation for the Hurwitz zeta function. As a direct consequence we obtain a short, motivated proof of Riemann’s functional equation for ζ(s). Introduction We present a short and motivated proof of Riemann’s functional equation for Riemann’s zeta funct...

متن کامل

A New Functional Identity for Riemann’s Zeta Function

Abstract. In this short paper we present a simple method for deriving a new and remarkable functional identity for Riemann’s Zeta Function. The connections between some functional equations obtained implicitly by Leonhard Euler in his work ”Remarques sur un beau rapport entre les series des puissances tant directes que reciproques (E 352)” in Memoires de l’Academie des Sciences de Berlin 17, (1...

متن کامل

A Remarkable Functional Identity for Riemann’s Zeta Function

Abstract. In this short paper we present a simple method for deriving a remarkable functional identity for Riemann’s Zeta Function. The connections between some functional equations obtained implicitly by Leonhard Euler in his work ”Remarques sur un beau rapport entre les series des puissances tant directes que reciproques (E 352)” in Memoires de l’Academie des Sciences de Berlin 17, (1768) per...

متن کامل

On the Non-trivial Zeta Zeroes and its significance in Quantum Systems

Motivated by Hilbert and Pölya, there were many developments in the field of spectral theory related to the study of Riemann’s Zeta zeroes. In this paper, Riemann’s 1859 paper is discussed, deriving the formula for the prime counting function that Riemann obtained. Another formula due to Weil will also be derived. The line of development of classical mechanics to quantum mechanics were presente...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016